The Myhill-Nerode Theorem
(lecture 20)



M = (Qu,S,d,Sy.Fv) s N = (Qn,S, dy,Sh.Fr): two DFAS
M and N are said to be isomorphic if there is a
(structure-preserving) bijection f:Q,-=> Q, S.t.

f(sm) = sn

f(d,(p,a)) = d(f(p),a) forallp € Q, ,a € S

p e Fy, iff f(p) e Fy.
l.e., M and N are essentially the same machine up to
renaming of states.

Facts:
1. Isomorphic DFAs accept the same set.
2. 1If M and N are any two DFAs w/o0 inaccessible states
accepting the same set, then the quotient automata M/~ and
N/ ~ are isomorphic
3. The DFA obtained by the minimization algorithm (lec. 14) is
the minimal DFA for the set it accepts, and this DFA is unique
up to isomorphism.



R: a regular set, M=(Q, S, d,s,F): a DFA for R w/o
Inaccessible states.

M induces an equivalence relation =, on S* defined by
X=y YIff D(s,x) =D (s,y).
l.e., two strings X and y are equivalent iff it is
Indistinguishable by running M on them (i.e., by running M
with X and y as input, respectively, from the initial state of M.)
Properties of = ,
0. =, IS an equivalence relation on S*.
(cf: = is an equivalence relation on states)
1. =, Is a right congruence relation on S*: i.e., for any X,y
S*andae S, x=,y=>Xxa=, Yya.

pf: if x=,,y == D(s,xa) = d(D (s,x),a) = d(D (s,y),a) = D(s,
ya)

—= Xa = ya.



» Properties of =,
- 2. =, refines R. l.e., for any X,y € S*,
0 X=yyYy==>XeRIiffy eR
-pf: x e R iIff D(s,x) € Fiff D(s,y) € Fiffy € R.
> Property 2 means that every =,,-class has either all its

elements in R or none of its elements in R. Hence R Is a
union of some = ,,-classes.

3. Itis of finite index, I.e., it has only dinitely many
equivalence classes.

> (l.e., the set { [X]=,, | X € S*}
- 1s finite.

o pf: x =, y Iff D(s,x) = D(s,y) = @
- for some g € Q. Since there

- are only |Q| states, hence

> S* has |Q| sy -classes

=,,-classes




= I an equivalence relation on S*,

R: a language over S".
= |Is called an Myhill-Nerode relation for R if it satisfies
property 1—-3. i.e., It Is a right congruence of finite index
refining R.
Fact: R Is regular iff it has a Myhill-Nerode relation.

(to be proved later)
1. For any DFA M accepting R, =, IS a Myhill-Nerode relation for R
2. If = is a Myhill-Nerode relation for R then there is a DFA M_
accepting R.
3. The constructions M —» =, and = »> M_ are inverse up to
Isomorphism of automata. (i.e. = = =,_ and M = M=)



R: a language over S, = : a Myhill-Nerode relation for
R;
the =-class of the string X is [X]. =4 {Y | X =VY}.
Note: Although there are infinitely many strings, there are
only finitely many = -classes. (by property of finite index)
Define DFA M= = (Q,S,d,s,F) where
Q={[x]11xeS*},  s=]lel,
F={[x] | X € R}, d([x],a) = [xa].
Notes:

O: M_ has |Q]| states, each corresponding to an = -class of =.
Hence the more classes = has, the more states M= has.

1. By right congruence of =, dis well-defined, since, if y,z €[X]
=>y=2Z=X=>Yya=za=Xa=>Yya, za € [xa]

2. X € RIff [X] € F

pf: ==: by definition of M= ;

<=:[X] e F=>%ys.t.ye Rand x=y => x € R. (property 2)



Lemma 15.1: D([x].,y) = [xvy]
pf: Induction on |y|. Basis: D([x],e) = [x] =[x€].
Ind. step: D([x],ya) = d(D([x].y).,a) = d([xy].a) =
[xya]. QED

Theorem 15.2: L(M.) = R.
pf: x e L(M.) Iff D(Je]l,x) e FIiff [X] € Fiff x e R. QED

Lemma 15.3: = : a Myhill-Nerode relation for R, M: a
DFA for R w/o Inaccessible states, then
. If we apply the construction = > M_ to = and then
apply M — =,, to the result, the resulting relation =, _ is

Identical to =
2. If we apply the construction M — =, to M and then
apply = > M_ to the result, the resulting relation M=,

IS 1Identical to M.



Pf: (of lemma 15.3) (1) Let M_ =(Q,S,d,s,F) be the
DFA constructed as described above. then for any
X,y In S*,

X =,,. Y Iff D(Je], X) = D(Je]l,y) iff [x] = [y] iff x =Y.
(2) Let M = (Q, S ,d,s,F) and let M=, = (Q’, S, d,s’,F’). Recall that
[XI =4y | y=u X} =4y | D(s,y) = D(s.x) }
Q={[xl11xeS*}, s =[el, F={[x]]|xeR}
d'([x], a) = [xa].
Now let f:Q’-> Q be defined by f([x]) = D(s,X).
1. By def., [x] = [y] iff D(s,x) = D(s,y), so f is well-defined
and 1-1. Since M has no inaccessible state, f is onto.
2. 1(s’) = 1([e]) =D(s, e) =s
3.[X] eF<==XxeR<=>=D(s,x) e F<==1([x]) € F
4. f(d([x].a)) = f([xa]) = Is,xa) = d(D(s,x),a) = d(f([x]), a)

By 1—4, fis an isomorphism from M=, to M. QED



Theorem 15.4: R: a regular set over S. Then up to
Isomorphism of FAs, there is a 1-1 correspondence
b/t DFAs w/0 Inaccessible states accepting R and
Myhill-Nerode relations for R.

|.e., Different DFAs accepting R correspond to different
Myhill-Nerode relations for R, and vice versa.

We now show that there exists a coarsest Myhill-Neorde
relation =; for any R, which corresponds to the unique
minimal DFA for R.

Def 16.1: =, , =, : two relations. If=, c =, (i.e., for
all x,y, X =,y == X =,y) we say =, refines =, .
Note:1. If =, and =, are equivalence relations, then
=, refines =, Iff every = ;-class Is included In a = ,-
class.

2. The refinement relation on equivalence relations is
a partial order. (since c is ref, transitive and
antisymmetric).



Note:
3.If , =, c =, ,we say =, Is the finer and =, Is the
coarser of the two relations.
4. The finest equivalence relation on a set U is the
Identity relation I, = {(X,x) | x € U}
5. The coarsest eguivalence relation on a set U Is
universal relation U2 = {(x,y) | X, y € U}

Def. 16.1: R: a language over S (possibly not regular).
Define a relation =, over S* by
X=xyIff forallz e S* (xz e R<=>yz € R)

l.e., X and y are related iff whenever appending the same
string to both of them, the resulting two strings are
either both in R or both not In R.



Lemma 16.2: Properties of =; :
O. =, Is an equivalence relation over S*.
1. =; Is right congruent
2. = refines R.
3. =, the coarsest of all relations satisfying 0,1 and 2.
[4. If R is regular == =, is of finite index. ]

Pf: (O) trivial; (4) immediate from (3) and theorem
15.2

(1)X_Ry=> forall z e S* (xz €e R <=>yz € R)
=>VvVaVvVw (Xaw € R <=> yaw € R)
=>V a (Xa=gYya)

(2) x=y =>(x e R<=>Yy cR)

(3) Let = be any relation satisfying 0—2. Then

X=y =>VzXzZ=yz ---Dbyind. on |z| using

property (1)

=>VzXze R<=>yzeR) ---by (2) =>x
=R Y-



Thorem16.3: Let R be any language over S. Then the
following statements are equivalent:

(a) R Is regular;
(b) There exists a Myhill-Nerode relation for R;
(c) the relation =; is of finite index.

pf: (a) ==(b) : Let M be any DFA for R. The construction
M — =, produces a Myhill-Nerode relation for R.

(b) == (c¢): By lemma 16.2, any Myhill-Nerode
relation for R is of finite index and refines R == = Is of
finite Index.

(c)==(a): If =4 Is of finite Index, by lemma 16.2, it is
a Myhill-Nerode relation for R, and the construction = —
M_ produce a DFA for R.



Note: 1. Since = ; is the coarsest Myhill-Nerode relation for
a regular set R It corresponds to the DFA for R with the
fewest states among all DFAs for R.

.e., letM = (Q,...) be any DFA for R and M = (Q’,...) the
DFA induced by =;, where Q’ = the set of all = ;-classes

=== |Q| = | the set of = ,-classes | >= | the set of =; -
classes |
= |Q’|.
Fact: M=(Q,S,s,d,F): a DFA for R that has been collapsed
(i.,e., M = M/=). Then = =,, (hence M is the unique

DFA for R with the fewest states)
pf: X=x YIff VzZe S* (X2 e R<=>yz € R)
Iff vz € S* (D(s,X2) € F <=> D(s,yz) € F)

Iff vz € S* (D(D(s,X),z) € F <=> D(DG,Y),z) € F)
Iff D(s,X) = D(s,y) Iiff D(s,x) = D(s,y) -- since M is
collapsed

Iff x=,y Q.E.D.



Can be used to determine whether a set R Is
regular by determining the number of =; -
classes.
Ex: LetA={a"b" | n>0 }.
If Kk # m => ak not =, a™, since akbke A but am™bk ¢
A .

Hence =, Is not of finite index == A iIs not regular.
In fact =, has the following =,-classes:

G,.=4{ak} k> 0

H.={a"*kb"|n>13} k=0

E=S*-U,., (GUH)=S*-{a™m" | m>n=>0 }



Example: letL={ x1 | xe€ {0,1} }*
What is the minimum number k of states of
all FAs accepting L ?

Analysis : k # 1. Why ?

2. Both of the following two 2-states FAs accept

0 1

L.
0,1
- :
P ’@ S
0




Minimal NFAs are not unigue up to iIsomorphism
Part of the Myhill-Nerode theorem generalize to NFAs
based on the notion of bisimulation.
Bisimulation:
Def: M=(Qy,S, dy,S\,Fy), N=(Qn,S,0,Sy,Fn): two NFAS,
~ . a binary relation from Q,, to Q.
ForBc Q. ,defineC_.(B)={pe Q, |$9B p~q}}
For Ac Q,, define C_.(A)={qeQy |$P A p~q}
Extend =~ to subsets of Q,, and Q. as follows:
AxB<=>,,; AcC/(B)and B < C_(A)
Iff Vpoe ASgeBs.t.p~rgandVvVgqeB%$p e As.t.p~q



CAC.A))




Def B.1: A relation = Is called a bisimulation if
1. Sy = Sy
2. 1If p~qthen Va € S, d,(p,a) = d(qg,a)
3.ifprqthenp e Fy, Iff g e Fyg.
M and N are bisimilar If there exists a bisimulation
between them.

For each NFA M, the bisimilar class of M is the
family of all NFAs that are bisimilar to M.

Properties of bisimulaions:

1.Bisimulation is symmetric: if ~ is a bisimulation b/t M
and N, then its reverse {(q,p)|p~g} Is a bisimulation b/t
N and M.

2.Bisimulation is transitive: M=, Nand N, P=> M =; =, P

3.The union of any nonempty family of bisimulation b/t M
and N is a bisimulation b/t M and N.



Pf: 1,2: direct from the definition.

B): Let{r |1 €l }bea nonempty Indexed set of bisimulations b/t M and
N. Define = =4 U, _, =

Thus p~q means $i e I pziq.

1. Since | is not empty, S, =; Sy for some i € I, hence S, = Sy

2. If p ~ q == $I e | p ~ q == dl\/l(p’a) ~ idN(q’a) == dl\/l(p’a) ~ dN(q’a)

3.Ifprxq =>p=;qforsomei==((pekFy,<=>=>qge k)

Hence ~ is a bisimulation b/t M and N.

Lem B.3: = : a bisimulation b/t M and N. If A = B, then for all x in S*, D(A,X)
~ D (B,X).

pf: by induction on |x]|. Basis: 1. x = e =B(A,e) = A =B = D(B,e).

2.xXx=a :sinceAcC,/(B),ifpe A==3%q e B withp ~qg. == d,(p,a) c
C.(0\(a,a)) < C .(Dy(B.a)). => Dy (A,a) = U, _, dy (p.a) = C.(Dy(B,a)).
By a symmetric argument, Dy(B,a) < C_(Dy(A,a)).
So Dy, (A,a) = Dy(B,a)).



3. Ind. case: assume D,,(A,x) = Dy(B,x). Then
D\,(A,xa) = D,(Dy(A,x), a) = Dy(Dy(B,X),a) = Dy(B,xa).
Q.E.D.

Theorem B.4: Bisimilar automata accept the same set.

Pf: assume ~ : a bisimulation b/t two NFAs M and N.
Since S, = Sy == Dy, (S)1,X) = Dy (Sy,x) for all x.
Hence for all X, x € L(M) <== D,(Sy, X) N F,\,| ;é {}
<==D\(S\:X) nFy=#{} <==xelL N :

Def: =~ : a bisimulation b/t two NFAs M and N

The support of ~ In M Is the states of M related by ~ to
some state of N, 1.e., {p € Qu | p = g for some g € Qu}

= C.(Qn)-



Lem B.5: A state of M is in the support of all bisimulations
Involving M Iff it Is accessible.

Pf: Let ~ be any bisimulation b/t M and another FA.
By def B.1(1), every start state of M is in the support of ~.

By B.1(2), if p is Iin the support of =, then every state Iin
d(p,a) is in the support of ~. It follows by induction that
every accessible state is in the support of ~.

Conversely, since the relation B.3 = {(p,p) | p Is accessible}
IS a bisimulation from M to M and all inaccessible states of
M are not in the support of B.3. It follows that no
Inaccessible state is Iin the support of all bisimulations.
Q.E.D.

Def. B.6: An autobisimulation is a bisimlation b/t an
automaton and itself.



Theorem B.7: Every NFA M has a coarsest
autobisimulation =,, , which is an equivalence
relation.

Pf: let B be the set of all autobisimulations on M.

B Is not empty since the identity relation I, = {(p,p)
| pIn Q } Is an autobisimulation.
1. let =, be the union of all bisimualtions in B. By
Lem B.2(3), =, Is also a bisimualtion on M and
belongs to B. So =,, is the largest (i.e., coarsest) of
all relations in B.
2. =, Is ref. since for all state p (p,p) € Iy < =y -

3. = IS sym. and tran. by Lem B.2(1,2).

A Rv 2 2 =  1c an acaniinn/alancae ralatinn nn N



M= (Q,S,d,S,F) : a NFA.
Since accessible subautomaton of M is bisimilar to M under the

bisimulation B.3, we can assume wlog that M has no inaccessilk
states.

Let =be=,,, the maximal autobisimulation on M.

forpinQ, let[pl=4{g| p =9 } be the =-class of p, and

let « be the relation relating p to its =-class [p], i.e.,

« c Qx2° =4t {(p,[PD) | PN Q}

for each set of states A c Q, define [A] = {[p]l | pIn A }. Then

_.em B.8: For all A,B c Q,
1. Ac C_(B) iff[A] c[B], 2. A=Biff [A] =[B], 3. A «[A]

:1. AcC_(B) <==>VpIinAvVginBs.t. p=qg <=> [A] c [B]
2. Direct from 1 and the fact that A=BiIff Ac C_(B) and Bc C
3. peA==pe|p] €[A],Be[A] ==%p € Awith p « [p] =

(



Now define M’ = {Q’, S, d’, S’,F'} = M/= where
Q" =[Q] ={lr] | p € Q},
S =[S]=A{lplIpeS}, F=[F]1=A{lp]|peF}and

d([p].a) = [d(p.,a)l,
Note that d' is well-defined since

[p] =[] == p =q => d(p,a) = d(q,a) == [d(p,a)] = [d(g,a)]
==> d'([p],a) = d'([g].a)
Lem B.9: The relation « is a bisimulation b/t M and M.

pf: 1. By B.8(3): Sc [S] = S.
2. 1t p «[q] == p=q==>d(p,a) = d(q.,a)
== [d(p.a)] = [d(g.a)] == d(p,a) « [d(p,a)] = [d(q,a)].
3.ifpe F=>[p] € [F] =F and
if [p] e F=[F] == 3%q € Fwith [q] = [p] == p=qg=>p
By theorem B.4, M and M’ accept the same set.




Lem B.10: The only autobisimulation on M’ is the
Identity relation =.

Pf: Let — be an autobisimulation of M’. By Lem B.2(1,z
the relation « — » Is a bisimulation from M to itself.
1. Now If there are [p] # [q] (hence not p =g ) with |
~ [a]

=>p«[p]l—[dl»g==p«—»0g =>«—»¢=, a
contradiction !.

On the other hand, if [p] not— [p] for some [p] == fc

any [q],
[p] not— [g] (by 1. and the premise)

==pnot(«~»)qforany q (p«[p] [a] »Qq)
== p IS not In the support of « — »



Theorem B11l: M: an NFA w/t inaccessible states, = : maximal
autobisimulation on M. Then M’ = M /= Is the minimal
automata bisimilar to to M and is unique up to isomorphism.

pf: N: any NFA bisimilar to M w/t inaccessible states.
N’ = N/ = where = is the maximal autobisimulation on N.
== M’ bisimiar to M bisimilar to N bisimiar to N’.
Let ~ be any bisimulation b/t M’ and N’.

Under =, every state p of M’ has at least on state g of N’ with p
~  and every state g of N’ has exactly one state p of M’ with |
O/wWp~=q~1p #p ===~="1is anon-identity autobisimulatior
on M, a contradiciton!.

Hence =~ is 1-1. Similarly, ~1is 1-1 => =~ is 1-1 and onto and
hence is an i1somorphism b/t M’ and N’. Q.E.D.



a generalization of that of Lec 14 for finding equivalent states
of DFAs

The algorithm: Find maximal bisimulation of two NFAs M and N
1. write down a table of all pairs (p,q) of states, initially
unmarked
2. mark (p,q) if p € F, and q ¢ Fy or vice versa.
3. repeat until no more change occur: if (p,q) Is
unmarked and if for some a € S, either
$p’ € dy(p,a) s.t. V q € dy(qg,a), (p’,q’) is marked, or
$q' € dy(q,a) s.t. V p’ € dy(p,a), (p’.q’) is marked,
then mark (p,q).
4. define p = q iff (p,q) are never marked.
5. If S, = Sy == = is the maximal bisimulation

o/w M and N has no bisimulation.



